
Table I shows that the [3, 3] approximation ensures a solution which is accurate to i 
part in i0 -~. It should be noted that this approximation also gives the same accuracy for a 
function (3) containing only V2(r) [3]. Hence, including Vx(r) in the function (3) does not 
change the order or the approximation in the numerical solution of the Lippmann-- Schwinger 
equation for the range of p, p~, and k 2 values indicated. 

. 

2. 
3. 
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DETERMINATION OF THE ELECTRODYNAMIC AND THERMAL FLUCTUATION 

CHARACTERISTICS OF A BICONICAL CAVITY 

A. M. Andrusenko, V. F. Kravchenko, 
and V. A. Solodukho 

UDC 621.372.413.017.71: 
621.391.822.2 

A method is proposed for the design of a biconical cavity with finite wall conduc- 
tivity. The quality of the resonance volume, the temperature field in its walls, 
and also the level of natural fluctuational thermal radiation are determined. 

A number of papers, which are mainly experimental in nature [1-3], are devoted to ir- 
regular limit cavities. Theoretical computations of high-quality oscillation systems of 
similar nature have also been performed [4]. However, the demands of the practice of ac- 
curate measurements by using volume resonance apparatus require a strict method of determin- 
ing the electrodynamic and noise properties of a biconical cavity, its average temperature 
over the volume, the thermal coefficient, and the maximum allowable dissipation power. The 
computation of these characteristics is the aim of this paper. 

This problem reduces to the solution of the Maxwell equation (rot = curl) 

rotE (r)  = - -  ikH (r) ,  m i l l  (r)  = ikeE (r)  (1 )  

and heat-conduction equation 
1 

A T ( r ) -  W(r )  = 0. (2 )  

The dissipative function W(r) (~is the coefficient of thermal conductivity of the cavity 
wall material) has the form [5] 

c 
W (r) = - -  8n Re div [E (r) • H (r)l. (3 )  

We determine the thermal and electrodynamic characteristics of the cavity under inves- 
tigation in the approximation of given thermal sources and temperature, respectively. Such 
a linearization of the system of equations (1)-(2), which corresponds physically to neglect- 
ing the mutual influence of the temperature and the complex conductivity of the cavity walls, 
is admissible in the following cases: relatively low power level of the working microwave 
field and weak dependence of the electrodynamic parameters of the cavity wall material on 
the temperature. 
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Fig. I. Biconical cavity (A) and its approximat- 
ing volume resonance system (B). 

The approach used in all the remaining cases results in somewhat exaggerated values of 
the ultimately allowable microwave power level of the field to be determined in the cavity. 

i. In solving the electrodynamic problem, we approximate the geometry of the initial 
cavity (Fig. IA) to that when the generators in the section ~ = const are a step structure 
(Fig. IB). An element in the latter is a coaxial dielectric washer of finite width, whose 
external radius is a, while the internal radius is aj (j = i, 2, 3, ..., n). The washers are 
placed in an ideally conducting waveguide. The number of washers n in each of the cavity 
sides is determined from the condition of the maximum allowable error in the result. 

Let us investigate the case of a field distributed symmetrically in ~. Let Smn (m, n = 
i, 2, 3, ...) be the n-th column of the reflection matrix of waveguide waves for each of the 
nonregular cavity surfaces. We find expressions for the elements of this matrix by using 
the method of rereflection [7] according to the known solution of the reference problem [6]. 
Assuming Smn known, we obtain a dispersion equation to determine the eigenfrequencies of such 
a step cavity. 

We consider the domain of the edge boundary an inhomogeneity with known characteristics 
in the plane z = zo and z = zo -- L. Then the oscillation system under investigation has the 
form of a rectangle with perfectly conducting surfaces r = a and known diffraction charac- 
teristics at z = zo -- L, z = Zo in the section. The field of such a cavity is represented 
by a spectrum of direct and reverse Hop waves [8]: 

s( m1  a ) E~ = ~ {A.,exp[--ihm(z--zo)l + B~exp [ih~(z--zo+ L)]} r (4) 

where hm = /k = -- (Xm/a)=; ~m are roots of the first-order Bessel function, and k is the free 
space wave number. 

Let us consider processes in the z = Zo plane. A set of waveguide waves whose amplitude 
is denoted by B m comes in on its left. Waves with amplitude A m depart from this plane in the 
z < 0 direction. Hence, the following operator equality can be written: 

(A~) = ((s~.))(B.~.), (5) 
where gn = exp(ihnL). 

By virtue of symmetry of the structure for the z = zo --L plane 

(Bin) = ((S=n)) (A.E.).  (6) 
That A m = ib m follows from a direct comparison of (5) and (6). 

The upper sign corresponds to the presence of symmetric types of oscillations relative 
to the z = zo -- L/2 plane, since the magnetic wall in this plane does not change the picture 
of the field in the cavity. Asymmetric oscillations correspond to the lower sign, since an 
electrical wall placed in the plane of symmetry introduces no distortions. 

According to (4)-(6), the dispersion equation to determine the eigenfrequencies of the 
oscillator system takes the form 

det [ E - -  S E  I = O. ( 7 )  

Here E is the unit matrix. 

The solution of (7) in combination with (4) yields a complete representation of the field 
behavior in the cavity under investigation and permits the determination of its quality Q = 
Rem/21mm. 
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Fig. 2. One of the coaxial 
dielectric washers compris- 
ing the step structure under 
investigation (the section 

= const). 

The passage to the limit L + 0 in (7) results in elimination of that part of the cavity 
surface which possesses perfect conductivity. In this case the complex dielectric permit- 
tivity of the elementary inhomogeneities assures assignment of the finite conductivity of 
the cavity walls. 

2. An electromagnetic field, which penetrates and heats the cavity walls, originates 
in the system upon excitation of the resonant cavity (Fig. IB). The temperature sources 
W(r) in (3) are characterized completely by the intensity of the dielectric losses, which 
are equivalent to the heat being liberated per unit volume, on the average, during a period 
of field oscillation: 

~Im____~ E (r) (8 )  W (r) = 8rt 

The cavity field is described by (4) with known amplitudes of the harmonics A m and B m 
upon excitation of the oscillatory system by Hop waves. This field impregnates the cavity 
walls and is determined completely within each washer by the E@-th component of the electrical 
field vector (6) (the region z > 0) except that still another set of analogous waves being 
propagated in the direction z < 0 is added. 

Let us determine the temperature T(r, z) of the cavity side walls under the condition 
that the distribution of the Hop wave field in the walls is known; i.e., the dissipative func- 
tion W(r, z) in (8) is defined. The solution of the boundary-value problem with Newton bound- 
ary conditions is difficult for the step structure (Fig. IB). Hence, we shall seek the so- 
lution of the heat-conduction equation (2) for each individual coaxial washer (Fig. 2) under 
the condition of no heat flux on adjoining surfaces of neighboring washers with boundary con- 
ditions of the third kind on the free washer surface within the resonant cavity (temperature 
of the filler gas To) and the condition that the temperature Tx is constant for r = a. Such 
a description of the temperature fields corresponds to the real nature of thermal processes 
in a step structure. Indeed, for small cavity cone angles the heat exchange between adjacent 
rings is insignificant, since heating occurs primarily from the inner end-face surface of the 
washer (region I) and the direction of the temperature gradient is almost radial. The esti- 
mates carried out for the magnitude of the longitudinal and radial heat fluxes in irregular 
domains show that neglecting the longitudinal temperature gradient in the case of the dielec- 
tric cavity walls results in an additional error in the result: 

where 

Te--TI  ( tgO ~2 
Te @ T 1 ~ 2-~-ff-] 100%, 

D 

lj 
Te-- D T(y) dy; y=rsinO+zcosO; 

0 

e is the angle between the generator of the irregular cavity surface and the longitudinal axis; 
and D is the length of the generator. For walls of pure metals, the error is 0(Tc/Tz) I/s 
times less than that mentioned for dielectric materials (0 is the ratio between the thermal- 
coefficients of the dielectric and the metal). 

For slopes of the cavity side walls with its longitudinal axis almost 7/2, the physical 
model considered does not reflect the actual behavior of the heat fields in the cavity walls. 
In this case, the planes rj = aj rather than the planes z = const must be the section planes 
with preferred temperature gradient, so that the elementary inhomogeneities are coaxial thin- 
walled cylinders of different radii. 
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Solutions of the boundary-value problems are sought analogously in both cases (small 
and almost w/2 cone angles). Let us investigate the case of a radial partition into elemen- 
tary domains (Fig. 2). The division into sections I and II is performed so that the bound- 
ary conditions on each boundary of the separate parts would be identical in nature. For 
r = c the heat fields of domains I and II satisfy the conjugate conditions (9). We seek the 
solution of the problem posed in the form of series expansions in the eigenvalues of the 
Sturm--L• problem for each of the domains: 

T O + u~ (r) cos~z + s in~z  , 
�9 O ~ z ~ d ,  

T(r,z) = n=l (9) 

I T1 + Vo (r) + ~ v~ (r) cos ~.z, c ~< r ~ a, 
,,=~ O ~ z ~ d ,  

where ~n are solutions of the equation tan~d = h/~; vn = ~n/d; and h is the coefficient of 
heat emission by the cavity walls into its cavity. 

Substituting T(r, z) from (9) into the heat conduction equation (2), solving it for the 
unknown functions vo(r), Vn(r), and Un(r) , and then satisfying the boundary conditions, we 
obtain 

r ~  

a c 

r 

v. (r) = A (~., a, r) An + ~ w.~ (~) A (%, b r) ~dg, 
Io (v. a) • 

a 
r 

u~ (r) = [[3.1 o (~.r) + Ko(~r) + f f  W~l(~)z A Ox~, ~, r)~d~, 
b 

where I j  (x) and Kj (x) are  modi f ied  Besse l  f u n c t i o n s  of j - t h  o rde r ;  
d d 

w~ ~nz(r) : - ~ j  'IY/z(r'z) c~ 

o o d 
Wnl(F) = "n ('~.l(r.z)(cOS,nZ~ - h_~s[npnz) dz; N.~= ~l:d+h(1 + h d )  . 

N~ J p,~ 2~t.h ' 
0 

A (g~, ~, ) = 1 o (g~) Ko (gJ) - -  Ko (g,~) Io (g.r); 

~ = [~,,K~ (~b) + hKo (~b)]/[~.I~ (~.b) - -  hlo (~b)]. 

To determine the unknown coefficients A, A n , and B n of the expansion of T(r, z) in the func- 
tional series, let us use the conjugate conditions for r = c. The use of the method of re- 
expansion results in an infinite system of the second kind: 

Rn § E G,~Rs T~ - -  T1 ~ tVn, n = 1, 2, 3 . . . . .  (lO) 
~=1 e~] In S-c 

a 

where 

0,~,n~ = 

q 

= Y__3_s ~ O,~ms; 

~do (~c) + Ko O,~c) 

2 2 d (,tt,~--v~m)(,tts--Vrn) A(vn,,a,c) 2 2 c c~t~ts In 
H 

fl (g,, ~, r) = I o (g~) K~ (g~r) + Ko (g~) I~ (g~r); 
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c a ~  

=Nnj "r~nl(~)~(p'''~'c)~d~• 2 1 c !'fl "woz(~)• 
b ~,,C l n - -  

a 

- -  J - d ~ a n  - 

Ill , s ~ l  
c b 

Q(vm, a,c) 
% (~) - a (~,~, a, c) a (v~, ~, c) - Q (~,  ~, c); 

and 6,m is the Kronecker symbol. 

The unknown coefficients A and A n are determined as a result of simple matrix operations 
over B n. 

3. Let us note that the two members in the right side of (i0) reflect the twin nature 
of the heat sources: the convective and radiative energy losses by the walls and the heat- 
ing because of the microwave power. 

The quantity (~ ~)-s in the expression for the matrix operator of the system (i0) 
grows rapidly with the increase in n and m, since 

~1,_! = T + =n (ii) 

However, starting with the numbers n ~ hd/z, the process of growth of this quantity ceases. 
It reaches its greatest value for n -- 1 = m, where this maximum is independent of the number 
n: 

m~xl{. 2 v2~_11__ d (12) 
( m , n )  Z t ~ n  m !  , 2h" 

Using the asymptotics of the modified Bessel functions for large values of the argument, 
and also (11)-(12), it can be shown that 

I S .In__, n =/= s, 
S (n 2 - -  s z) n (13 )  

17. -a ,  R ~ S.  

The estimates (11)-(13) presented permit us to establish that 

lim sup ~ [ G . ~ / = O ,  
M ~  (s) n > M  

i.e., the matrix operator (i0) is completely continuous in the space of number sequences l, 
and, therefore ([i0]), the system allows the application of the method of reduction. Hence, 

~IA~[<oo, ~]Bn[<oo; i.e., A, An, and B n belong to the class of sequences satisfying the 
11 fl 

condition of finiteness of the temperature in an arbitrary region of the specimen being heated. 

In the case of a discrete energy pumping mode in the cavity, the solution of the prob- 
lem posed is made complicated. However, the desired temperature field can be represented as 
the superposition of two functions. The first is responsible for the nonstationarity of the 
mode, and the second is the solution of the problem examined in this paper. It is not dif- 
ficult to seek the first function [9]. 

The magnitude of the intrinsic noise radiation intensity of the cavity walls depends on 
their temperature (and the energy coefficient of electromagnetic field attenuation therein) 
and is determined by an expression from [7]. The diffraction characteristics of the side 
surfaces of a biconical cavity are known. We define its wall temperature as the mean tem- 
perature with respect to the volume of all elementary inhomogeneities from which the oscil- 
latory system is composed. The heat field of the inner washers is represented by the rela- 
tions (9). The temperature distributionin the extreme washers comprising the inhomogeneity 
is determined analogously by using theexpansion of the desired function T(r, z) in an eigen- 
function series of the Sturm--Liouville problem. 
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Therefore, the values found for the electrodynamic and thermal characteristics of a bi- 
conical cavity permit thedetermination of the greatest achievable level of microwave 
working power, the thermal rupture modes of the system, and also the correction to 
the magnitude of the cavity field because of the intrinsic fluctuating thermal radiation of 
the heated walls. The method proposed for the computation of the electromagnetic and ther- 
mal fields of a blconical cavity by using its partition into an approximate profile of ele- 
mentary inhomogeneities affords the possibility of finding the designated characteristics of 
a number of microwave units with arbitrary shape of the functional elements. 
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UNSTEADY HEAT LOSSES OF UNDERGROUND PIPELINES 

B. L. Krivoshein and V. M. Agapkin UDC 536.24.02 

Analytic expressions are presented for the unsteady temperature distribution of the 
ground and heat losses of an underground pipeline for an arbitrary variation of the 
temperature of the medium being transferred and boundary conditions of the third 
kind at the pipe wall and the surface of the ground. 

i. The design and operation of oil and gas pipelines require calculating the heat loss- 
es of a pipeline under unsteady heat-transfer conditions. Transient thermal processes arise 
in oil and gas pipelines in turning off oil heating stations and devices for air cooling of 
gas, stopping the transfer, starting up the pipeline, etc. These processes lower the per- 
formance of the system, increase the power expended, and may lead to fusion of the rust-in- 
hibiting insulation, a loss of longitudinal stability, and emergency stopping of transfer. 
To develop recommendations for ensuring reliable operation of gas and oil pipelines it is 
necessary to have available relations for calculating unsteady heat losses of pipelines. 

Solutions of the problem of Unsteady heat transfer between an underground pipeline and 
the surrounding medium have been obtained under a number of simplifying assumptions. A cor- 
relation of the papers on this problem is given in [i]. The most general result for large- 
diameter pipelines not far below the surface of the ground was obtained in [2]. However, the 
solution is given in the form of a double sum over eigenfunctions, which complicates its 
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